org-mode/testing/examples/org-latex-preview-test.org

31 lines
1.1 KiB
Org Mode
Raw Normal View History

#+latex_header: \usepackage{amsmath}
#+latex_header: \usepackage{amssymb}
* Inline fragments and LaTeX environments
:PROPERTIES:
:ID: 0b3807b3-69af-40cb-a27a-b380d54879cc
:END:
The LQR problem for a time-periodic system of the form
\begin{align}
\dot{x} = A(t) x + B(t) u, \quad t \in [0, \infty), \quad x(0) = x_i \label{eq:time-varying-system}\\
A(t+T) = A(t),\ B(t + T) = B(t) \nonumber
\end{align}
is as follows. With a quadratic form defined on \( (x,u) \) pairs
\begin{align}
\label{eq:quadratic-form}
\mathbf{q}(x, u) := \lim_{t_f \to \infty} \int_{0}^{t_f} \begin{bmatrix} x \\ u \end{bmatrix}^{\star} \begin{bmatrix}
Q & 0 \\
0 & r
\end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} =: \lim_{t_f \to \infty} \int_{0}^{t_f} q(x,u) dt
\end{align}
with \( q \ge 0 \) and \( r \ge 0 \), find the infimum of the quadratic form \( \mathbf{q} \) subject to the dynamics:
\[
\inf_{x,u} \mathbf{q}(x,u).
\]
\begin{align}
\label{eq:lqr-inf-via-duality}
\inf_{x, u} \mathbf{q}(x, u) = x_i^{\star} \bar{\lambda}(0) x_i,
\end{align}
where \( \bar{\lambda} \) is the maximal solution of the differential linear matrix inequality over \( [0, t] \).